
JOURNAL OF COMPUTATIONAL PHYSICS 134, 96–107 (1997)
ARTICLE NO. CP975675

Discrete Transparent Boundary Conditions for
Schrödinger-Type Equations

Frank Schmidt* and David Yevick†

*Konrad-Zuse-Zentrum für Informationstechnik Berlin, D-14195 Berlin-Dahlem, Germany; †Queen’s University,
Department of Electrical Engineering, Kingston, Ontario, Canada K7L 3N6

E-mail: Frank.Schmidt@zib.de

Received May 28, 1996; revised February 10, 1997

practical purposes, however, the required computational
effort is limited by the fact that we wish to compute theWe present a general technique for constructing nonlocal trans-

parent boundary conditions for one-dimensional Schrödinger-type solution of (1) only in a finite subdomain of V in order to
equations. Our method supplies boundary conditions for the u- examine the time evolution in the surrounding of a speci-
family of implicit one-step discretizations of Schrödinger’s equation fied object. In our 1D-case, we accordingly separate the
in time. The use of Mikusiński’s operator approach in time avoids

infinite domain V into three slab-like parts: an interiordirect and inverse transforms between time and frequency domains
domain of finite thickness Vi 5 hx, t [ R u xl # x # xr ,and thus implements the boundary conditions in a direct

manner. Q 1997 Academic Press t . 0j containing the physically relevant part of the solu-
tion and two neighboring slabs of infinite thickness Vl 5
hx, t [ R u x # xl , t . 0j and Vr 5 hx, t [ R u x $ xr , t .

1. INTRODUCTION 0j. The general question is then how to transform the zero-
boundary conditions at infinity to the boundary conditions

This paper is concerned with the construction of trans- at the boundaries of the interior domain.
parent boundary conditions for evolution partial differen- There are a large number of methods for constructing
tial equations of the type such boundary conditions, a few of which are discussed

below. The methods can be grouped into two classes:
tu 5 2

i
c

(2
xu 1 V(x, t)u), x [ R, t . 0, (1) Artificially Absorbing Layers. One set of simple but

powerful boundary conditions continuously modify the po-
u(x, 0) 5 u0(x). tential functions in the exterior domain in order to simulate

a physical absorber. The parameters have to be adjusted
Here c is a real constant and V(x, t) denotes the potential such that backward diffraction from the absorber is small
to be specified later. Prototypes of this equation are the over a prescribed spectral range, c.f. [7], [14], [8], [13]. The
Schrödinger equation for an electron with mass m0 , main advantage of such an approach, as has been remarked

by a large number of authors, is its simplicity for two and
three-dimensional problems.

i"tC 5 2
"2

2m0
2

xC 1 V(x, t)C,
Approximate Solutions in the Entire Physical Do-

main. A second class of methods is obtained by analyti-
and Fresnel’s equation for the evolution of a paraxial elec- cally constructing boundary conditions in such a manner
trical field E along the z-direction in a Cartesian coordi- that the solutions in the interior domain approximate as
nate system, accurately as possible the whole-space solution of the evo-

lution equation. Following the pioneering work of Eng-
2in0k0zE 5 2

xE 1 (n2(x) 2 n2
0) k2

0E. quist and Majda [4] on hyperbolic equations, a number of
approximation techniques have been proposed for mixed
parabolic-hyperbolic systems (Halpern [5]) or parabolicThe evolution equation (1) is defined in the infinite domain

V 5 hx, t [ Rut . 0j, where the physical boundary condi- equations (Hagstrom [6]). In these papers, by Laplace
transforming in time, the partial differential equation istions are imposed. For example, if u0(x) has support only

in a finite interval and iu0(x)iL2 is bounded, we expect that converted to a second-order ordinary differential equation,
which is then solved allowing only for decaying modes inu(x, t) must vanish if x R 6y at any time t . 0. For
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the exterior domains. After transforming into the time- boundary conditions directly without transforming from
the dual to the original domain.domain the resulting transparent boundary conditions in

general become nonlocal in time but are local in space. In our analysis, we assume the following two properties
of the domain decomposition and the potential functionComputationally advantageous approximations that re-

quire little additional computational effort are then ob- • u0 is supported in Vi
tained by applying a rational approximation to the disper-

• V(x, t) 5 const for (x, t) [ Vl and for (x, t) [ Vr .sion relation in the dual frequency domain.
While the first of these conditions is not required, it signifi-However, for problems in which minimizing the magni-
cantly simplifies the analysis by allowing us to assume thetude of the reflected field is more important than computa-
asymptotic behavior u(x, t) R 0 if x R 6y for any timetional cost, nonlocal boundary conditions are generally
t . 0. The second condition, which can in fact be replacedadvantageous. The two main categories of nonlocal condi-
by the weaker form V(x, t) 5 V(t) as in [11], is realizedtions are, first, methods in which the continuous problem
by many practical problems and thus has similarly beenis solved first and then discretized with respect to time,
chosen to permit a compact solution. Further, we assumeas suggested by Baskakov and Popov [2]. However, such
I (V/c) # 0 to ensure the stability of the solution. Let usapproaches may lead to numerical instabilities. In [9] May-
rewrite (1) asfield analyzed the stability of such a discrete scheme uni-

form in time (with time-step Dt) and space (with space-
tu 5 f (u, t), (x, t) [ Vstep Dx) and found that stability is given only in disjoined

intervals for Dt/Dx2. Alternatively, the analytical problem with
can be consistently formulated for discrete time. In this

u(x, 0) 5 u0(x)manner, Arnold [1] compose a boundary condition which
incorporates both a uniform space and a uniform time lim

xR6y
u(x, t) 5 0.

discretization. In the direction of the space-coordinate his
approach is exactly the same as the one of Eisenberg To solve this equation numerically, we apply the implicit
et al. [3], who used this continuation of the uniform dis- one-step discretization method
cretized space coordinate to infinity to solve the time-
independent 1D Schrödinger equation. In contrast, the ui11 2 ui 5 t f (uui11 1 (1 2 u)ui , ti 1 ut)
approach by Schmidt and Deuflhard [11] supposes a given,

t 5 ti11 2 ti , i 5 0, 1, ...,possibly nonuniform, time-discretization and solves the re-
lated exterior ordinary differential equations in the spatial 0 , u # 1.
domain with the aid of the Laplace transform. We will label

It is known that for homogeneous Dirichlet boundary con-this approach the semi-discrete method. The advantage of
ditions this scheme is stable if As # u # 1. Using the definitionthe latter procedure is that the exterior space problem is
of f (u, t) from (1), we obtainsolved exactly and independently of the solution method

for the inner problem. Accordingly, the formalism may be
easily extended to nonuniform interior discretizations and ui11 2 ui 5 2i

t

c
((2

x 1 V)(uui11 1 (1 2 u)ui)). (2)
adaptive methods. On the other hand, Arnold’s technique
should generally be advantageous in simulations of wave The notation above will be particularly useful in our later
propagations on uniform grids since reflections due to implementation and stability analysis of the transparent
space-discretization effects are fully eliminated. boundary conditions in Sections 3.3 and 3.4. However, for

In this paper we demonstrate that the semi-discrete ap- constructing transparent boundary conditions, the follow-
proach can encompass a uniform time-discretization in a ing sequence of ordinary differential equations resulting
consistent fashion, generating a simple, yet highly accurate from the time-discretization of the underlying partial dif-
transparent boundary condition. This boundary condition ferential equation, is more convenient:
can be applied to all space-discretizations of the interior
domain, which permit the specification of arbitrary Neu- 2

xui11 2 l2ui11 5 2Q2
xui 1 k2ui

mann conditions. Thus even pseudo-spectral methods [12]
can be used to discretize the inner problem. Further we Q 5

1 2 u

u (3)show that this approach may similarly be extended to a
uniform space-discretization of the exterior domain and

l2(x, ti 1 ut) 5
ic
tu

2 V(x, ti 1 ut)thus to the full discrete case. Our procedure employs both
Laplace and Z-transforms in the space variable (and not
in time) and the Mikusiński representation [10] of the time-

k2(x, ti 1 ut) 5 2
ic
tu

2 QV(x, ti 1 ut).
discrete problem. We can accordingly construct the desired
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We now seek solutions ui , i $ 1, of (3) that vanish at Since the Laplace transform of each term in (6) follows
frominfinity. While we will eventually employ a discretization

such as a finite-difference or finite-element representation
to solve the interior problem, we focus here on obtaining

L Hxn

n!
e2lxJ5

1
(p 1 l)(n11) ,an exterior solution which enables the boundary conditions

to be constructed. For this purpose, we fix the right bound-
ary at xr 5 0, t . 0 and search for solutions ui(x), i $ 1,

Ui(p) is an analytic function on R(p) . 0 and satisfiesx $ 0 in the right exterior domain. These exterior solutions
have to obey the boundary condition at infinity

Ui(p) , y for all p with R(p) . 0. (7)

lim
xRy

ui(x) 5 0, i $ 1. (4) Condition (7) may be regarded as an implicit formulation
of the boundary condition (4) i.e., we have to choose the
boundary conditions in such a way that (7) holds for any

2. PRELIMINARY CONSIDERATION i $ 1. Thus, in order to verify the condition for any time-
step, we must analyze the sequence U1(p), ..., Ui11(p)We first consider the solution, u1(x), of Eq. (1) in the
(where the index here refers to the propagation step num-exterior domain, x $ 0, at the initial time step. This solution
ber) of Laplace-transformed solutions in the exterior do-is obtained by solving
main. The recurrence relation for this sequence is given
directly by the Laplace transformation of (3); namely,

2
xu1 2 l2u1 5 0,

which yields Ui11 5

pui11(0) 1 xui11ux50 1 Q(pui(0)
1 xuiux50) 2 (Qp2 2 k2)Ui

p2 2 l2 . (8)

u1(x) 5 c1 exp(lx) 1 c2 exp(2lx), To verify the condition (7), we investigate the poles of
Ui11(p) in the right half-plane. We express each Ui(p) as
quotient of two polynomials. Since U1(p), given accordingwhere l 5 Ïl2, R(l) . 0. To satisfy the zero-boundary-
to (5) bycondition at infinity (4), the values of u1(0) and xu1u0

must ensure that c1 5 0, leading to the desired form of
the solution:

U1(p) 5
u1(0)
p 1 l

,

u1(x) 5 u1(0) exp(2lx). (5)
has the form U1(p) 5 P1(p)/Q1(p), we may assume that
each Ui(p) possesses the same structure, that is,

This yields the required transformation of the boundary
conditions at infinity to the boundary condition at xr for
the first time step. By induction, representing each ui(x) Ui(p) 5

Pi(p)
Qi(p)

, Pi(p), Qi(p)-polynomials.
by a convolution of the homogeneous part of the solution
of (3) with the right-hand side of (3) and choosing the free

From (8) we then obtainconstants as before such that ui(x) remains bounded for
x R y we derive that the exterior solution at step i can
be written as

Ui11(p) 5
P̃i11(p)

(p2 2 l2)Qi
, (9)

ui(x) 5 Pi21(x) exp(2lx), (6)
where P̃i11(p) is an as yet undetermined polynomial. How-
ever, the above expression is in general unbounded for

where Pi21(x) denotes a polynomial in x of degree i 2 1. p 5 l and R(l) . 0. Thus the related solutions ui11 will
Alternatively, the exterior solution ui can be obtained by diverge for x R 6y.
regarding the Laplace transform We therefore arrive at the central issue of the paper,

namely the specification of appropriate boundary condi-
tions which ensure the finiteness of Ui11(p 5 l) for

Ui(p) 5 L ui(x) 5 Ey

0
e2pxui(x) dx. bounded Ui(p) in the right half-plane. That is, we wish to
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combine ui11(0) and xui11u0 in P̃i11(p), in such a manner
Ui11(p) 5

pui11(0) 1 xui11u0 1 Q(pui(0) 1 xuiu0)
p2 2 l2 1 s(Qp2 2 k2)

. (12)that

Evidently if the denominator of (12) approaches zero, i.e.,P̃i11(l) 5 0. (10)
if the semi-discrete dispersion relation

As can easily be verified, the two free coefficients associ-
p2 2 l2 1 s(Qp2 2 k2) 5 0ated with the boundary value and the normal derivative

can be combined in such a manner that the result factors as
is fulfilled, the homogeneous solution diverges at infinity
unless the numerator simultaneously vanishes. The zeros

P̃i11(p) 5 (p 2 l)Pi11(p). of p occur at the solutions, p 5 p6 , of

This leads to a rational expression for Ui11(p) given by p2 5
l2 1 k2s
1 1 Qs

, (13)

Ui11(p) 5
(p 2 l)Pi11(p)

(p 2 l)(p 1 l)Qi(p) which yields

p6 5 6lÏ(1 1 k2/l2s)/(1 1 Qs), R(l) . 0.
5

Pi11(p)
Qi11(p)

,

Therefore, the necessary condition that guarantees the ex-
act solution of (3) isand, therefore, to a polynomial Qi11 , which does not con-

tain zeros in the right half-plane if such zeros are absent
p1ui11(0) 1 xui11ux50 1 Q(p1ui(0) 1 xuiux50) 5 0,in Qi . Hence the solution ui11(x) corresponding to Qi11

i $ 0. (14)possesses the required asymptotic behavior.

The recursive structure of (14) combined with the require-3. OPERATOR FORMULATION
ment that u0(x) 5 0 for x $ 0, yields finally the following
compact form of the desired transparent boundary con-We now formalize the above approach in such a manner
ditionthat the desired boundary condition is automatically satis-

fied at each propagation step. As the method is based on
p1ui11(0) 1 xui11ux50 5 0 (15)the recursive strategy discussed above, it leads to a compact

numerical procedure. p1 5 lÏ(1 1 k2/l2s)/(1 1 Qs),

R(l) . 0. (16)3.1. Reformulation Using the Shift-Operator Technique

We first introduce the shift-operator s 5 exp(2ptt) with For future implementation it is convenient to split p into
pt 5 /t. In our notation this operator shifts the time a s-independent part and a second expression which has
index i by one unit the property that each term in its Taylor series representa-

tion is homogeneous with respect to s according to
ui(x) 5 sui11(x).

p1 5 pI 1 pH

Accordingly, by the linearity of the Laplace-transform, pI 5 l

pH(s) 5 l(21 1Ï(1 1 k2/l2s)/(1 1 Qs)).Ui(p) 5 sUi11(p). (11)

This representation enables us to separate the term corre-
The technique of manipulating the shift-operator directly

sponding to multiplication by a constant coefficient from
in real space without transforming the underlying equation

terms that generate the index-shifts.
into the dual, frequency, domain, is in accordance with the
algebraic operator theory of Mikusiński [10]. According Special Case I: Implicit Midpoint Discretization. We

now illustrate (15) for potential functions that vanishto this theory the shift-operator s can be manipulated as
if it were a complex number. We present a simplified ver- outside the inner domain Vi . Considering first an implicit

midpoint discretization for which u 5 0.5 and Q 5 1,sion of the Mikusiński formalism in the Appendix. We
rewrite (8) and (9) as we have
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p1 5 lÏ(1 2 s)/(1 1 s)
(7)

(2
xu 1 const u)x50 R

2
h2 (u(2h) 2 u(0) 1 hxuux50)

5 l(1 2 s 1 Ass2 2 As s3 1 Dk s4 2 Dk s5 1 ? ? ?),
1 const u(0).

yielding the boundary condition

The above boundary condition is now substituted for the
lui11 1 xui11ux50 5 l(ui 2 As ui21 1 As ui22

(18)
normal derivative of u, leading to the finite-difference rep-
resentation of the transparent boundary condition.2 Dk ui23 1 Dk ui24 2 ? ? ?)ux50.

3.3. Finite-Element ImplementationSpecial Case II: Implicit Euler Discretization. Con-
sidering next the implicit Euler scheme in the propagation Next, we derive and discuss a transparent boundary
direction, we apply instead u 5 1 and Q 5 0. We then condition analogous to that of the previous section, but
obtain in place of Eqs. (17) and (18) based on a finite-element discretization of (2). The finite-

element method automatically satisfies the symmetry
p1 5 lÏ1 2 s properties required for numerical stability. However,

many other discretization methods such as the finite-5 l(1 2 As s 2 Ak s2 2 aQh s3 2 a%sk s4 2 ? ? ?),
difference approach can be shown to possess identical
symmetries and are therefore equally stable. The weak

and form of (2) is

lui11 1xui11ux50 5l(Asui 1 Akui21 1 aQhui22 1 a%skui23 1 ? ? ?)ux50.

(v, ui11) 1 i
t

c
u(xui11ux5xrx5xl

1 a(v, ui11)) 5 (v, ui)
(19)3.2. Finite-Difference Implementation

Having developed the continuous formulation of our
1 i

t

c
(1 2 u)(xuiux5xrx5xl

2 a(v, ui)),
transparent boundary condition, we now examine finite-
difference and finite-element implementations. Consider-
ing first the finite-difference formalism, we wish to trans-

withform (3) into its corresponding discrete approximation.
That is, we must replace 2

xu by its discrete analogue
on both the right- and the left-hand sides of (3). In the a(v, u) 5 2E xvxu 1 E vV(x)u (20)
case of a uniform computational grid with a step-width
xi 2 xi21 5 h for all inner points we substitute in

(v, u) 5 E vu (21)standard fashion

for any v [ H1(Vi). Discretizing the problem restricts the2
xuux5xi R

1
h2 (ui21 2 2ui 1 ui11)

test-function space to Vh , H 1(Vi). Accordingly, we obtain
the matrices A and M from the bilinear forms a(?, ?) R A

with a O(h2) discretization error. At the x 5 0 boundary, and m(?, ?) R M. Hence the discrete version of (19) yields
however, we instead apply the Taylor expansion of u(x)
at x 5 0,

u(h) 5 u(0) 1 u9(0)h 1 As u0(0)h2 1 O(h3), SM 1 i
t

c
uAD ui11 1 i

t

c
u 1

2xui11ux5xl

0

xui11ux5xr

2
to rewrite 2

xu as

2
xuux50 5

2
h2 (u(2h) 2 u(0) 1 hxuux50) 1 O(h).

5 SM 2 i
t

c
(1 2 u)AD ui 2 i

t

c
(1 2 u) 1

2xuiux5xl

0

xuiux5xr

2 .

Here we assume that u(0), u9(0) and the rightmost inner
value u(2h) are given. Thus we must rewrite the differen-
tial equation, (3), at the boundary in the finite-difference Together with the boundary condition (15), we arrive at

the final form of the equation systemimplementation as
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kui11 , ui11lM 2 kui , uilM 5 22(u 2 As)

SM1 i
t

c
uAD ui11 2 i

t

c
upI 1

ui11(xl)

0

ui11(xr)
25SM2 i

t

c
(12u)ADui kui11 2 ui , ui11 2 uilM 2 2

t

c
R(i(uuxuu)ux5xrx5xl

).

The same procedure can be applied to the exact solutions
of (2) in the exterior regions. For the right exterior domain

1 i
t

c
(12u)(p1(s)) 1

ui(xl)

0

ui(xr)
2 1 i

t

c
upH(s) 1

ui11(xl)

0

ui11(xr)
2 . x $ xr

(ui11 , ui11) 2 (ui , ui) 5 22(u 2 As)(22)

(ui11 2 ui , ui11 2 ui) 2 2
t

c
R(i(uuxuu)ux5y

x5xr
)3.4. Stability Properties

We now introduce the notation
with an analogous result for the left exterior domain. Our
boundary conditions, however, preserve the exponential

kv, ul 5 vTu, decay of the exact solution of (2) in the exterior domains
as both exterior solutions are described by (6), with

for Euclidean inner product, while the discrete L2-product R(l) . 0. Hence, the boundary terms vanish as x R
in terms of the symmetric positive definite matrix M de- y and further cancel at x 5 xl,r so that
fined above is written as

O
j5l,r

(ui11 , ui11)Vj
1 kui11 , ui11lM 2 SO

j5l,r
(ui , ui)Vj

1 kui , uilMDkv, ulM 5 vTMu,

and the related discrete L2-norm is 5 22 Su 2
1
2D SOj5l,r

(ui11 2 ui , ui11 2 ui)Vj

iui 5 Ïku, ulM.
1 kui11 2 ui, ui11 2 uilMD .

We now show that given matrix A which is self-adjoint
with respect to the Euclidean inner product, for 0.5 # The right-hand side of the above expression is nonpositive
u # 1 the discrete L2(Vi) norms of u1 , ..., ui11 obtained for u $ 0.5, establishing both the numerical stability of
using (22) remain bounded for any time step t. Hence our the algorithm and the uniqueness of the interior solution.
numerical scheme is unconditionally stable under these Furthermore, for the implicit midpoint rule, u 5 0.5, we find
conditions. To prove our assertion, we again invoke the
weak form of (2) that forms the basis of (22). We now, O

j5l,r
(ui , ui)Vj

1 kui , uilM 5 const for all i $ 0. (24)
however, rearrange the expression as

Equation (24) extends the conservation property of the
(v, ui11 2 ui) 5 2i

t

c
a(v, uu) 2 i

t

c
((vxuu)ux5xrx5xl

) (23) implicit midpoint rule with homogeneous Dirichlet or Neu-
mann boundary conditions to the entire real space.

with 4. DISCRETE SOLUTION OF THE
EXTERIOR PROBLEM

uu 5 uui11 1 (1 2 u)ui .
We now consider the case of uniform spatial discretiza-

tion in the interior domain Vi. Under the assumption ofRestricting (23) again to its discrete form, setting v 5
a uniform grid point spacing in the exterior domain, anuu , and taking the real part yields
identical finite-difference stencil can be applied in both the
interior and exterior domains, providing an approximate
solution of the continuous problem. Hence in this particu-Rkuu , ui11 2 uilM 5 2

t

c
R(i(uuxuu)ux5xrx5xl

).
lar case, completely reflection-free boundary conditions
can be realized by sacrificing the quality of the approxima-
tion applied to the exterior domain. In contrast, the semi-A rearrangement of the terms in the above expression

leads to discrete approach discussed above supplies the exact solu-
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tion of (3) in the exterior domain, at the cost of a small 1
h2 (U 2

i11 22Ui11 1U 1
i11)2l2Ui11 52

Q

h2 (U 2
i 22Ui 1U 1

i )residual reflection, which of course vanishes as h R 0. The
nature of the residual reflection is evident from a backward 1k2Ui , i$0.
analysis of the problem in which the discrete inner solution
is considered as the exact solution of a slightly modified This equation yields, in view of (25) and the shift-operator
equation. Unless the same discrete approximation is em- definition (11),
ployed in the exterior and interior domains, the difference
in the underlying equation in the two domains necessarily

Ui11(z) 5produces a small reflected field.
2

u(21)
i11 2 zu(0)

i11 1 Q(u(21)
i 2 zu(0)

i )
z 2 (2 1 h2l2) 1 1/z 1 sQ(z 2 (2 1 h2k2/Q) 1 1/z)

.
4.1. Discrete Treatment of the Space Coordinate

To implement the above procedure, we associate the
Again in analogy to the continuous case, we now computesolution points at the ith propagation step with physical
the zeros z6 of the discrete dispersion relationlocations according to the formula

u( j)
i 5 ui( j ? h), j $ 21, i $ 0.

z2(21h2l2)1
1
z

1sQ Sz2S21h2 k2

Q
D1

1
zD50, (27)

Here u(21)
i is the rightmost inner value in Vi while u0

i is
located on the boundary between the internal and the right

which are given byexternal region. The equation corresponding to (12) is
obtained by introducing the sequences

z6(s) 5 1 1 q6(s) (28)
ui 5 hu(0)

i , u(1)
i , u(2)

i , ...j with
u1

i 5 hu(1)
i , u(2)

i , u(3)
i , ...j

q6(s) 5 c1
1 1 b2s
1 1 Qs

6 c2!1 1 b2s
1 1 Qs !1 1 c2s

1 1 Qsu2
i 5 hu(21)

i , u(0)
i , u(1)

i , ...j,

c1 5 As h2l2

(29)
with Z-transforms

c2 5 As Ïh2l2 Ï4 1 h2l2

Ui 5 Zui 5 u(0)
i 1

1
z

u(1)
i 1

1
z2 u(2)

i 1 ? ? ?
c2 5

4Q 1 h2k2

4 1 h2l2

U 1
i 5 Zu1

i 5 u(1)
i 1

1
z

u(2)
i 1

1
z2 u(3)

i 1 ? ? ?
b2 5

k2

l2 .

U 2
i 5 Zu2

i 5 u(21)
i 1

1
z

u(0)
i 1

1
z2 u(1)

i 1 ? ? ?.
Applying the root-theorem of Vieta to (27) we find
z1z2 5 1. If we define z1 and z2 such that uz2u , 1 and

Suppressing the time-step subscript i in the following, we uz1u . 1. Then, choosing the square roots such that
observe next that the transforms U 1 and U 2 are related R(c2) . 0, the desired discrete counterpart to the trans-
to U by parent boundary condition (15) is given by

U 2 5
1
z

U 1 u(21) (25) u(21)
i11 2 z1u(0)

i11 5 0,

U 1 5 z(U 2 u(0)). (26) or equivalently,

If we now Z-transform the finite-difference form of (3)
u(0)

i11 2 u(21)
i11 1 q1u(0)

i11 5 0. (30)in Vr ,

4.2. Implementation1
h2 (uj21

i11 2 2uj
i11 1 uj11

i11) 2 l2uj
i11 5 2

Q

h2 (uj21
i 2 2uj

i 1 uj11
i )

To incorporate (30) into a numerical code, we proceed
exactly as in Section 3.3. In particular, we first derive the1 k2uj

i , j $ 21, i $ 0,
equation system for homogeneous Neumann conditions.
We set formally q1 5 0 to obtain the equation systemwe obtain
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withSM 1 i
t

c
uAD ui11 5 SM 2 i

t

c
(1 2 u)AD ui , (31)

k0 5 2f/l, l 5 0.832, n 5 1,

after applying the FD-stencil to all inner points and discret- with the initial condition and the reference index n0 in the
izing the second derivative operator according to first case

Example 12
xuux5xr

R
1
h2 (u21 2 u0)

5u(x, z 5 0) 5 exp(2(x/10)2) exp(2in0 sin(a)x)

n0 5 cos(a), a 5 21.88,for the right boundary with an analogous expression at the
left boundary. Completing this system by imposing the
boundary condition (30) yields and in the second case,

Example 2

SM1 i
t

c
uAD ui11 2 i

t

ch2 uq1(s) 1
ui11(xl)

0

ui11(xr)
2 5

u(x,z50)5oj51,2exp(2((x2 lj)/10)2)exp(2in0 sin(aj)x)

l1 5212.5, l2512.5, a1 526.88, a2 516.88,

n05cos(b), b521.88.

The first of these involves a single beam with a Gaussian5SM2 i
t

c
(12u)ADui1 i

t

ch2 (12u)q1(s) 1
ui(xl)

0

ui(xr)
2 .

profile propagating in vacuum, n 5 1, at a wavelength of
0.832 em and describing an angle of a 5 21.88 with respect
to the z-axis. The computational window has a width of
200 em and the propagation step length Dz 5 0.4 em. TheAfter the operator q is separated into its homogeneous
propagation distance of Z 5 500 em is selected to yieldand inhomogeneous parts, we finally arrive at
a single reflection from the boundary.The second set of
comparisons involves a superposition of two Gaussian
beams, one placed at a distance 212.5 em from the coordi-SM1 i

t

c
uAD ui11 2 i

t

ch2 uqI 1
ui11(xl)

0

ui11(xr)
25SM2 i

t

c
(12u)ADui nate origin and propagating at an angle of 26.88 and the

second placed at 112.5 em from the coordinate origin and
propagating at 16.88. In all test cases a uniform finite-
difference discretization in x-direction has been utilized
together with the implicit midpoint rule in the direction1 i

t

ch2 (12u)q1(s) 1
ui(xl)

0

ui(xr)
2 1 i

t

ch2 uqH(s) 1
ui11(xl)

0

ui11(xr)
2 .

of propagation (z-axis). In order to visualize the residual
reflections the 10210, 1028, 1026, 1024, 1022, 1021 iso-lines of
uu(x, z)u2, where u(x, z) is the numerically calculated electric
field profile normalized with respect to the discrete L2-Numerical Stability. As the arguments presented in
norm such that iu(x, 0)i 5 1, are plotted.Section 3.4 are equally valid for the discrete problem, our

implicit one-step methods are unconditionally stable for Semidiscrete Approach. Figure 1 displays the iso-line
0.5 # u # 1, provided the discretization insures that matrix plot for the first test case corresponding to the propagation
M is symmetric positive definite and that the matrix A is of a single beam on a uniform N 5 1024 point transverse
self-adjoint with respect to the Euclidean inner product. grid. As expected from the above theory, some small re-

flections are produced by the discretization error in the
5. APPLICATION TO THE FRESNEL EQUATION transverse, x, direction. Our simulation of the second test

example in Fig. 2 supplies similar results. The magnitude
Having outlined both the theory and the implementation of the reflections are approximately the same as in the

of the discrete transparent boundary conditions we now former case despite the far more complicated shape of the
investigate the two test cases of [14] associated with optical field at the window boundaries.
beam propagation in the Fresnel approximation. The In order to verify that the magnitude of the reflection
model problem is depends on the accuracy of the inner solution rather than

on the shape of the propagating field, we have repeated
2in0k0zu 5 2

xu 1 (n2 2 n2
0)k2

0u our numerical experiments for N 5 8192 transverse discret-
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FIG. 3. Iso power curves for the single-beam test case with N 5 8192.FIG. 1. Iso-curves for the electric power for a single Gaussian beam
and N 5 1024 grid points.

the previous examples can be avoided with the aid of our
full discrete approach, for uniformly spaced grid points.ization points, generating the results given in Fig. 3 and

Fig. 4. It is evident from these figures that the spurious Repeating our test examples with N 5 1024 grid points,
we thus obtain the iso-lines of Figs. 6 and 7 which containreflections are suppressed as the accuracy of the inner

solution increases. no observable reflected power. The corresponding evolu-
tion of the discrete L2-norm is presented in Fig. 8 over aIn Fig. 5, we instead present the discrete L2-norm of the

field, u(x, z), remaining inside the computational window distance of 500 em, which equates to 1250 propagation
steps. The full discrete approach is here numerically prefer-as a function of the number of transverse discretization

points. The plateaus in the figures indicate the power re- able, as is expected to be generally true for uniform meshes
although, as noted above, the method assumes a continua-flection coefficient after an integer number of reflections.

Clearly, these results confirm that magnitude of the reflec- tion of the uniform mesh throughout the exterior domain.
To verify the stability of our algorithm subject to finitetion coefficient varies with the x-discretization error of the

problem in the interior domain. computer arithmetics, we have repeated this calculation
for 10,000 propagation steps. The resulting discrete L2-We finally demonstrate that the spurious reflections of

FIG. 2. Iso power curves for a two-beam test case with N 5 1024. FIG. 4. Iso power curves for the two-beam case with N 5 8192.
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FIG. 7. Iso-curves for the two-beam test case with N 5 1024 in theFIG. 5. The discrete L2-norm of the electric field remaining inside
full discrete approach.the computational window for N 5 8192.

presented in [11]. As our method is derived directly from
norm of the field remaining inside the computational win- the Mikusiński’ operator theory, Z-transforms in the time
dow, which evolves as shown in Fig. 9, then decreases variable of the field at the boundary are not present. Ac-
approximately to 10212. This figure is in good accordance cordingly, our derivatives and formulas are particularly
with the product of the 103 nodes with the 10215 machine simple in nature, yielding additional insight into the struc-
accuracy and clearly demonstrates the stability of our algo- ture and behavior of reflectionless boundary conditions.
rithm.

APPENDIX A: TAYLOR SERIES EXPANSION OF THE
CONCLUSIONS

SQUARE ROOTS INVOLVING THE SHIFT-OPERATOR

We have constructed general transparent boundary con- The central enabling feature of our technique is the
ditions for uniformly discretized 1D Schrödinger-type approximation of square-root operators such as Ï1 2 s
equations based on a recursive semi-discrete formulation involving the shift-operator s by a finite number of Taylor

FIG. 6. Iso power curves for the single-beam with N 5 1024 in the FIG. 8. Discrete L2-norm of the electric field remaining inside the
computational window for N 5 1024.full discrete approach.
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to represent the order i Taylor series expansion of
Ï1 1 a, a [ C, at a 5 0. That is, [Ï1 1 a]i 2 Ï1 1 a 5
O(ai11), in which we select the branch of the square root
with R (Ï1 1 a) . 0. Clearly, we have for any a [ C,
R(l) . 0,

(p2 2 l2(1 1 a)) 5 (p 1 l[Ï1 1 a]i)

(p 2 l[Ï1 1 a]i) 1 O(ai11).

Here we can replace the complex number a by the operator
2s. Now (32) transforms into

(p 2 l[Ï1 2 s]i)(p 1 l[Ï1 2 s]i)ui11(p)
(33)

5 pui11(0) 1 xui11ux50 ,

FIG. 9. Discrete L2-norm of the electric field remaining inside the
because the term O(si11)Ui11(p) is identically zero. Ourcomputational window for N 5 1024 and 10,000 propagation steps (exam-

ple 1). The solution-process remains stable. discrete transparent boundary condition (15), xui11ux50 1
l[Ï1 2 s]iui11(0) 5 0, inserted into (33) finally yields

(p 2 l[Ï1 2 s]i)((p 1 l[Ï1 2 s]i)Ui11(p) 2 ui11(0)) 5 0.series terms. A mathematical justification of the expansion
(34)is provided through the algebraic operator theory of Mi-

kusiński [10]. A greatly simplified framework can, how-
We now establish that a solution Ui11(p) of (34) does notever, be developed in our special case leading to the alter-
contain poles with R(p) . 0 if such poles do not appearnative, compact justification presented below. Although
in any Uj(p) 1 # j # i. Recasting (34) into the formour considerations may be easily adapted to the general

case, we here simplify our discussion to the semi-discrete
(p 1 l)Ui11(p) 5 l(1 2 [Ï1 2 s]i)Ui11(p) 1 ui11(0)formalism and further set u 5 1, corresponding to the

implicit Euler discretization.
5 2l Oi

j51
(21) j S1/2

j
D Ui2j11(p) 1 ui11(0)After the ith propagation step, i $ 1, the sequence of

boundary values hu0(0), u1(0), ..., ui(0)j, as well as the se-
quence of the Laplace-transformed exterior solutions

shows that the additional pole generated at the (i 1 1)thhU0(p), U1(p), ..., Ui(p)j, are determined, where by defini-
recurrence step appears at p 5 2l. The analyticity oftion u0(0) 5 0 and U0(p) 5 0. Let us extend these sequences
Ui11(p) for all R(p) . 0 is thus assured if any Uj(p), 1 #to h..., u21(0), u0(0), ..., ui(0)j and h..., U21(p), U0(p), ...,
j # i is analytic in the same domain.Ui(p)j with uj(0) 5 0 and Uj(p) 5 0 for j # 0. At step

i 1 1 it holds (see (12)) that
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